Energy Deposition in

Dummy Septum Blade Dummy Septum Tank Vacuum Chamber MMU15

Sanja Damjanovic, DGS-RP

CERN, 28 February 2012

PS Straight Section 15 – Dummy Septum

dummy septum blade : 40 cm length, 3mm thickness and 3.88 cm height ; material: tungsten

dummy septum tank of cylindrical shape: inner radius $R_i=10$ cm, outer radius $R_o=10.6$ cm, wall thickness 6 mm, length 115 cm; material: stainless steel 316 LN

Assumptions for the simulations

- proton beam of p=14 GeV/c
- beam loss intensity: 1.0×10¹¹ p/s (~1% of the primary intensity 1×10¹³ p/s)

- source dummy septum with impact points:
 - along the beam direction (z) at the start of the blade
 - Gaussian distribution in the vertical direction (x) with $\sigma_x = 2.5$ mm centered in the middle plane

uniform distribution in the horizontal direction (y) over 3mm thickness of the blade

Energy Deposition in the SS15 and along the MMU15

beam loss rate 10^{11} p/s

For qualitative illustration: projection into the x-z plane (x height, z beam direction)

enlarged SS15 region

Energy deposition extracted individually for:

- 1) dummy septum blade 2) dummy septum tank
- 3) vacuum chamber of the magnet unit 15

Dummy Septum Blade

Energy Deposition in the material of the dummy septum blade

projection of deposited energy E [GeV/cm³/primary] into the x-z plane, averaged over the blade thickness Δy =3mm

Maximum value $E_{max} = (1.31 \pm 0.01) \text{ GeV/cm}^3/\text{primary}$

Energy Deposition Rate in the dummy septum blade

beam loss intensity of 10¹¹ p/s

projection of deposited energy rate E [GeV/cm³/s] into the x-z plane, averaged over the blade thickness Δy =3mm

Maximum value $E_{max} = (1.31 \pm 0.01) \times 10^{11} \text{ GeV/cm}^{3/s}$

Maximum Energy Deposition in the dummy septum blade

1-dim projection along the blade length (z), averaged over $\pm 1\sigma_x$ in x and over the blade thickness of 3mm (y)

Maximum value $E_{max} = (1.31 \pm 0.01) \text{ GeV/cm}^3/\text{primary}$

Maximum Energy Deposition Rate in the dummy septum blade

22

1-dim projection along the blade length (z), averaged over $\pm 1\sigma_x$ in x and over the blade thickness of 3mm (y)

Maximum value $E_{max} = (1.31 \pm 0.01) \times 10^{11} \text{ GeV/cm}^3/\text{s}$

Maximum value $E_{max} = (21.0 \pm 0.1) \text{ J/cm}^3/\text{s}$

Dummy Septum Tank

Energy Deposition in the material of the dummy septum tank

2-dimensional projection of Energy Deposition [GeV/cm³/primary] in the x-z plane, averaged over $y=\pm R_{tank}$

Maximum energy values for -1144<z<-1118 cm

Maximum Energy Deposition in the dummy septum tank

azimuthal asymmetry in the energy deposition:

variation in the medium plane by a factor of 10 between left and right azimuthal average smaller by a factor of 3 than the maximum

Maximum Energy Deposition in the dummy septum tank

Maximum value $E_{max} = (5.0 \pm 0.05) \times 10^{-4} \text{ GeV/cm}^{-4}/\text{primary}$

Maximum Energy Deposition Rate in dummy septum tank

Vacuum Chamber of the MMU15

Energy Deposition in the vacuum chamber of the MMU15

2-dimensional projection of E [GeV/cm³/primary] in the x-z plane, averaged over -44<y<-24 cm (z range here length of SS15)

Maximum energy values for -1144<z<-1122 cm

2-dimensional projection of E [GeV/cm³/primary] in the x-y plane, averaged over -1144 <z< -1122 cm

azimuthal asymmetry in the energy deposition

-42

-40

-38

-34

ч (с**n**)

-32

-30

-28

-26

-44

Maximum Energy Deposition in the vacuum chamber of the MMU15

Maximum value $E_{max} = (1.15 \pm 0.005) \times 10^{-3}$ GeV/cm³/primary

S. Damjanovic, CERN

Ш

Maximum Energy Deposition Rate in the vacuum chamber of the MMU15

Comparison of Maximum Energy Deposition

Comparison of Maximum Energy Deposition

Rate for beam loss intensity of 10¹¹ p/s

Material	maximum Energy [GeV/cm ³ /primary]	maximum Energy Rate [GeV/cm ³ /s]	maximum Energy Rate [J/cm ³ /s]
dummy septum blade	1.31±0.01	(1.31±0.01)×10 ¹¹	21.0±0.1
dummy septum tank	(5.0±0.05)×10 ⁻⁴	(5.0±0.05)×10 ⁷	(8.0±0.1)×10 ⁻³
vacuum chamber of the magnet unit 15	(1.15±0.01)×10 ⁻³	(1.15±0.01)×10 ⁸	(1.84±0.02)×10 ⁻²

Conclusion

- Maximum energy deposition in the material of the dummy septum blade, dummy septum tank and vacuum chamber of MMU15 determined by FLUKA simulations
- Only instantaneous temperature increase can be deduced from FLUKA, using the specific heat capacity of the material
- Stationary temperature distribution requires thermomechanical simulations by dedicated software, e.g. ANSYS, using the FLUKA results as input