Sensitivity of the BLM position in SS15 to the dummy blade angle

Sanja Damjanovic, DGS-RP

CERN, April 26, 2012

Motivation

Could Beam Loss Monitors installed in SS15 be used to check and monitor the correct alignment of the dummy septum blade?

SS15 with Dummy Septum Tank, Beam Screen Window and Blade

Possible positions and orientations of a LHC BLM IC

Geometry of the LHC BLM IC

exact geometry of the LHC BLM IC implemented in FLUKA (source: FLUKA team)

LHC BLM IC: length 59.9 cm , diameter 8.9 cm , sensitive volume 1.5 I, filled by nitrogen at 1.1 bar

61 parallel Al electrode plates, spacing 0.5 cm , thickness 0.05 cm
electronic part

Assumptions for the simulations

- proton beam of $p=14 \mathrm{GeV} / \mathrm{c}$
- beam loss intensity: $10^{11} \mathrm{p} / \mathrm{s}$ ($\sim 1 \%$ of the primary
- Cu blade intensity $10^{13} \mathrm{p} / \mathrm{s}$)
- source: dummy septum with distributed impact points along the beam direction (z) at the start of the blade Gaussian distribution in the vertical direction (x) with $\sigma_{x}=2.5 \mathrm{~mm}$ centered in the middle plane uniform distribution in the horizontal direction (y) over 3mm thickness of the blade

Rotation of the dummy septum blade around a vertical axis, placed at the start of the blade in its center; three angles considered: $\theta=0,1$ and 2 degrees

Single Event Display - blade angle $\theta=0^{\circ}$

Single Event Display - blade angle $\theta=2^{\circ}$

```
protons neutron photons
```


most probable interaction not in the dummy blade in SS15, but further downstream in the region of SS16 (mostly in the region of

Residual Dose Rates for the 3 different blade angles

Example : Residual Dose Rate [$\mu \mathrm{Sv} / \mathrm{h}]$ in $\mathrm{z}-\mathrm{y}$ plane after cooling time of 40 days no change in blade angle blade angle 1 degree blade angle 2 degrees

Large differences in residual dose rate distribution
Change in the blade angle increases the residual dose rate in SS16

Response of the IC-type BLMs in nA to 1\% beam loss in the dummy septum blade for 3 different blade angles

For fixed blade angle large differences in currents depending on the BLM position; highest signal for BLMs placed in between the tank and shielding blocks

Currents for blade angle $\theta=0^{\circ}$ higher by factors of 1.8 and 3 compared to angles of $\theta=1^{\circ}$ and $\theta=2^{\circ}$, resp. roughly following the change in interaction probability (for W the factors would be smaller by $\sim 30 \%$)

Response of the IC-type BLMs in nA to 1% beam loss in the dummy septum blade for 3 different blade angles

source - start of the blade
change in the blade angle : 0,1 and 2 degrees

Higher signals for BLMs placed along the outer side of the machine
Optimal position for BLM horizontally oriented (along y) at the front face of MMU15 above the coils?

Stray Radiation on the ground level above the PS SS15/SS16 for the 3 different blade angles

Different shapes and slightly smaller maximal values of Ambient Dose-eq Rates at the ground level for blade angles $\neq 0$

