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    PS Straight Section 15 – Dummy Septum 

   dummy septum tank of cylindrical   

    shape: inner radius Ri=10cm,  

    outer radius Ro=10.6 cm, wall  

    thickness 6 mm, length 115 cm; 

    material: stainless steel 316 LN 

 Dummy septum   

-  a blade of 40 cm length, 3mm  

   thickness and 3.88 cm height  

 

-  installed in the middle of SS15 

   along the beam direction,   

   placed within the beam tube,  

   wall thickness of 3mm 
MAG14 

dummy septum  blade : 40 cm length,  

3mm  thickness and 3.88 cm height ; 

material: tungsten  

dummy 

septum 

blade 
vacuum chamber  

of MMU15 

dummy 

septum tank 

position of the blade in transverse plane 
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Assumptions for the simulations   

- source - dummy septum with impact points:    

- proton beam of p=14 GeV/c  

- beam loss intensity: 1.0×1011 p/s   (~1% of the primary   

                                                           intensity 1×1013 p/s) 

   Gaussian distribution in the vertical direction (x)  

   with σx =2.5 mm centered in the middle plane  

along the beam direction (z) at the start of the blade  

uniform distribution in the horizontal direction (y)  

over 3mm thickness of the blade 
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  Energy Deposition in the SS15 and along the MMU15  
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1011 p/s 

enlarged SS15 region 

MMU15 SS15 

Energy deposition 

extracted individually for: 

1) dummy septum blade 

2) dummy septum tank 

3) vacuum chamber of  

     the magnet unit 15  

For qualitative illustration: 

projection into the x–z plane 

(x height, z beam direction) 



  Dummy Septum Blade 
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Energy Deposition in the material of the dummy septum blade 

Maximum value Emax = (1.31±0.01) GeV/cm3/primary 
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projection of  deposited energy E [GeV/cm3/primary]  into the x-z plane, 

averaged over the blade thickness Δy=3mm 
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Energy Deposition Rate in the dummy septum blade 

Maximum value Emax = (1.31±0.01)×1011 GeV/cm3/s 
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                beam loss intensity of 1011 p/s 

projection of  deposited energy  rate E [GeV/cm3/s]  into the x-z plane, 

averaged over the blade thickness Δy=3mm 
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Maximum Energy Deposition in the dummy septum blade 

Maximum value Emax = (1.31±0.01) GeV/cm3/primary 

beam momentum p=14 GeV/c 

1-dim projection along  the blade length (z), averaged over ±1σx in x 

and over the blade thickness  of 3mm (y) 
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Maximum Energy Deposition Rate in the dummy septum blade 

Maximum value 

Emax = (1.31±0.01)×1011 GeV/cm3/s 

Maximum value 

Emax = (21.0±0.1) J/cm3/s 

1-dim projection along  the blade length (z), 

averaged over ±1σx in x and over the blade 

thickness  of 3mm (y) 



   Dummy Septum Tank 
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Energy Deposition in the material of the dummy septum tank 

Maximum energy values for -1144<z<-1118 cm   

2-dimensional projection of  Energy Deposition  

[GeV/cm3/primary] in the x-z plane, averaged over y=±Rtank 
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Maximum Energy Deposition in the dummy septum tank 

azimuthal asymmetry in the energy deposition:   

2-dimensional projection 

of  Energy Deposition 

[GeV/cm3/primary]  

in the x-y plane, averaged 

over -1144 <z< -1118 cm 
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dummy 

septum tank 

variation in the medium plane by a factor of 10 between left and right 

azimuthal average smaller by a factor of 3 than the maximum 
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    Maximum Energy Deposition in the dummy septum tank 

Maximum value Emax = (5.0±0.05)×10-4 GeV/cm3/primary 
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Maximum Energy Deposition Rate in dummy septum tank 

Maximum value  

Emax = (5.0±0.05)×107 GeV/cm3/s 

Maximum value  

Emax = (8.0±0.1)×10-3 J/cm3/s 
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  Vacuum Chamber of the MMU15 
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2-dimensional projection of  E 

[GeV/cm3/primary] in the x-z plane, 

averaged over -44<y<-24 cm  

(z range here length of SS15) 

2-dimensional projection of  E  

[GeV/cm3/primary] in the x-y plane, 

averaged over -1144 <z< -1122 cm 

azimuthal asymmetry in  

the energy deposition  

Energy Deposition in the vacuum chamber of the MMU15  

E
 [G

e
V

/c
m

3/p
rim

a
ry

] 
E

 [G
e

V
/c

m
3/p

rim
a

ry
] 

Maximum energy values for  

-1144<z<-1122 cm   
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Maximum Energy Deposition in the vacuum chamber  

of the MMU15  

Maximum value Emax = (1.15±0.005)×10-3 GeV/cm3/primary 
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z range now over full 

length of SS15 and 

MMU15 
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Maximum Energy Deposition Rate in the vacuum chamber of the MMU15  

Maximum value  

Emax = (1.15±0.005)×108 GeV/cm3/s 

Maximum value  

Emax = (1.84±0.008)×10-2 J/cm3/s 
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  Comparison of Maximum Energy Deposition 
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Rate for beam loss intensity of 1011 p/s    

 

    Material  

maximum  Energy 

[GeV/cm3/primary] 

maximum Energy 

Rate [GeV/cm3/s] 

maximum Energy 

Rate [J/cm3/s] 

dummy septum 

blade 

    1.31±0.01 (1.31±0.01)×1011    21.0±0.1 

 

dummy septum 

tank 

 (5.0±0.05)×10-4  

 

  (5.0±0.05)×107  

 

 (8.0±0.1)×10-3  

vacuum 

chamber of the 

magnet unit 15 

 

 (1.15±0.01)×10-3  

 

 (1.15±0.01)×108  

 

(1.84±0.02)×10-2  

  Comparison of Maximum Energy Deposition 
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-  Maximum energy deposition in the material of the  

    dummy septum blade, dummy septum tank and vacuum  

    chamber of MMU15 determined by FLUKA simulations 

Conclusion 

-  Stationary temperature distribution requires thermomechanical  

    simulations by dedicated software, e.g. ANSYS, using the  

    FLUKA results as input  

-  Only instantaneous temperature increase can be deduced 

    from FLUKA, using the specific heat capacity of the material  


